Management & Return to Work/Activity Following Exertional Heat Illness

Rebecca M. Lopez, PhD, ATC, CSCS
University of South Florida
Athletic Training/ Orthopaedics & Sports Medicine
Korey Stringer Institute
SCCAHS 2018
Objectives

• After this presentation, attendees will learn:
 – Brief epidemiology of heat-related illness in occupational setting
 – Exertional heat illness (EHI) overview
 – On-site management of exertional heat illness
 – Importance of recognizing predisposing factors when addressing return to work/activity (RTA) in the heat
 – Various physiological tests that should be considered when making a RTA decision following EHI
EPIDEMIOLOGY OF HEAT-RELATED ILLNESS IN OCCUPATIONAL SETTINGS
Recent Epidemiology of Heat Illness in Occupational Setting

• Between 2000-2010, 359 heat-related deaths in U.S.
 – 0.22 per 1 million workers
 – Majority of cases between June-August
 • Noon – 6PM
 – Agriculture: > 35x the risk of heat-related death
 – Construction: 13x the risk of heat-related death

Recent Epidemiology of Heat Illness in Occupational Setting

• Between 2007-2011: 8,315 heat-related emergency department (ED) visits and inpatient hospitalizations (IH) in Southeast U.S.
 – Out-of-state workers may not be well acclimated to heat/humidity in Southeast
 – Many cases occur on first few days of exposure
 – Those with co-morbidities are at greater risk for more serious condition
 – Greatest risk May through September
 – Many employers had no heat illness prevention program

What happens when employees leave ED and return to work?

Is the risk of EHI still present?
Exertional Heat Illness

• Exercise-associated muscle cramps (i.e. heat cramps)
• Heat syncope
• Heat exhaustion
• Exertional heat stroke
Exercise-Associated Muscle Cramps (EAMC)

• Recognition
 – Visible muscle group cramping, localized pain, thirst, dehydration, sweating, fatigue
 – Differentiate from sickle cell trait muscle pain

• Initial Treatment
 – Rest, passive stretching, ice massage
 – If sodium depleted → sodium containing fluids & food

• Prevention
 – Two basic theories/schools of thought:

Electrolyte (sodium chloride) Depletion

Muscle Fatigue/Overload

Exercise-Associated Muscle Cramps (EAMC)

- Return to Work/Clearance for Activity
 - Exercise as tolerable (muscle soreness)
 - Determine cause of muscle cramps
 - Electrolyte depletion vs fatigue vs combo
 - Patient education (diet, exercise, hydration)
 - R/O “cramping” associated with exertional sickling (sickle cell trait)
Heat Syncope

• Recognition
 – Fainting or collapse with normal body temperature
 – Assess responsiveness, breathing, HR to rule out cardiac condition

• Initial Treatment
 – Move to cooler area, monitor vitals, elevate legs above heart
 – Cool skin, rehydrate
 – Call 911 if condition does not improve

Heat Syncope

• Clearance for Activity
 – **Rule out more serious cause of syncope**
 • (Cardiac, heat stroke, sickle-cell associated collapse, others?)
 – Educate on exercise-associated collapse or lack of heat acclimatization
 – Determine cause of syncopal episode

Heat Exhaustion

• Initial, On-Site Treatment
 – Remove excess clothing and equipment
 – Move to cooler area
 – Body cooling via ice towels, fans
 – Place in supine position with legs above level of heart
 – Fluid replacement if possible
 – Transfer to physician if IV needed or symptoms persist for more than 30 min

Heat Exhaustion

• Follow Up Treatment/ Return to Activity
 – Determine cause of heat exhaustion
 • Fluid depletion, sodium depletion?
 • Lack of heat acclimatization?
 • Exercise demands unmatched to fitness level
 – Rule out heat stroke (normal enzyme levels, CK)
 – Ensure cause of event is eliminated/modified

EXERTIONAL HEAT STROKE
Exertional Heat Stroke

• Most severe exertional heat illness (medical emergency)
• Defined by hyperthermia (> 105°F/ 40.5°C) associated with central nervous system and potential for multiple organ system failure → death
• Result of metabolic heat production and environmental heat load
• Excessive heat production and/or inhibited heat loss
Pathophysiology of EHS

Extrinsic factors → Exercise/Heat stress → Intrinsic factors

Metabolic rate ↑

sweat

Tc ↑

CO ↑

skin BF ↑

visceral BF ↓

compensable

dehydration

CVP ↓

intestinal permeability ↑

uncompensable

inflammatory reaction

CNS dysfunction & global encephalopathy

BBB breakdown

HEAT STROKE

Death

CNS dysfunction & global encephalopathy

Liver dysfunction

ARF

Coagulopathy (DIC)

Muscle breakdown

Cardiac dysfunction

Death from EHS

• Death from EHS is preventable
• Why they die:
 – Misdiagnosis (no/ inaccurate temp)
 – No care or delay in care/tx
 – Inefficient cooling modality
 – Immediate transport
 – RTA too soon

Casa et al. EHS: New Concepts Regarding Cause & Care. CSMR. 2012
Clinical Presentation

• Clinical Signs, Symptoms, and Presentation
 – Elevated core (rectal) temp > 105°F (40.5°C)
 – CNS: restlessness, seizures, confusion, coma
 – Tachypnea, hyperventilation
 – Cerebral edema, decerebrate, decorticate posturing
 – Coagulopathies (disseminated intravascular coagulation; DIC)
 – Cardiac impact and dysfunction
 – Gastrointestinal hemorrhage
 – Hepatic failure
 – Elevated liver enzymes
 • Alanine Transaminase (ALT); aspartate aminotransferase (AST)
 – Explosive rhabdomyolysis (elevated CK levels)

Present on-site (prior to transport)

Wagner & Boyd, 2008; Epstein & Roberts, 2011
Basic Paradigm for Care of EHS

Rapid Recognition → Rapid Assessment → Rapid Cooling → Rapid Advanced Care

Consensus Statement- Prehospital Care of Exertional Heat Stroke, 2018
RTA CONSIDERATIONS FOLLOWING EHS
RTA Considerations

Has the individual recovered from EHS?

What caused EHS?

What are the needs/requirements of the activity/work?

Side Note: How can this be prevented for the individual RTA and others?

Prevention, Recognition, Tx, EAP
Figure 3. Questions a Clinician Should Ask When Returning an Athlete to Football After EHS

RTP Following EHS in High School Football

- Has the athlete recovered from EHS?
 - Normal labs
 - Sequelae resolved
 - Physician clearance

- What caused EHS?
 - Level of heat acclimatization
 - Physical fitness status
 - Fluid needs
 - Organizational concerns (work:rest)
 - Other predisposing factors (i.e. illness, medications)

- What are the needs/requirements of his sport/position?
 - Metabolic system demands
 - Strength & conditioning needs of sport
 - Position-specific requirements

Lopez et al. J Athl Train. 2018
RTA Considerations

• Has the individual recovered from EHS?
 – Full recovery or lingering sequelae (liver enzymes, renal function, muscle injury/CK levels)
 – Heat intolerance or temporary heat intolerance
 • Core temperature & heart rate responses to exercise in heat
 – Heat intolerance: lower thermoregulatory efficiency and the inability to properly adapt to exercise in hot environments
 • Ketko et al. 2015
Recovery

- Recovery directly associated with recognition and care provided at time of EHS
 - Was there prompt recognition of EHS?
 - Was individual aggressively cooled (via cold water immersion) to below threshold ($T_{re} < 105^\circ F$, ideally 102.5°F before transport to ED) within 30 minutes of collapse?

Prognosis poor with later intervention.

Recovery

• Recovery associated with recognition and care provided
 – Normal organ function
 – Normal blood values
 – Heat tolerance
 – Physician clearance

Stearns et al., CSMR, 2016
Recovery

Table 26-1
Normal Laboratory Blood Measures for Return to Play From Exertional Heat Stroke

<table>
<thead>
<tr>
<th>Blood or Serum Enzyme Measure</th>
<th>BUN (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>AST (UI/L)</th>
<th>ALT (UI/L)</th>
<th>CK (UI/L)</th>
<th>LDH (UI/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal level*</td>
<td>5 to 20</td>
<td>0.6 to 1.2; M 0.5 to 1.1; F</td>
<td><40</td>
<td><31; F BMI ≤ 23†</td>
<td>45 to 260</td>
<td><250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><42; F BMI ≥ 23†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><41; M BMI ≤ 23†</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td><66; M BMI ≥ 23†</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Specific ranges should be established for each laboratory to determine abnormal ranges for each of the markers above.

† Values adjusted to BMI and sex.

Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; CK, creatine kinase; F, female; g/dL, grams per deciliter; LDH, lactate dehydrogenase; M, male; UI/L, international units per liter.

What Caused the EHS?

• Causes must be addressed **before** RTA
 – EHS is multifactorial
 – Intrinsic and extrinsic factors

• **Use factors that led to EHS as guideline for the RTA process**
 – Johnson et al. 2013; Adams et al. 2015
What Causes Can Be Addressed?

Organizational Factors
- Heat acclimatization
- Work to rest ratio
- Modifications based on environmental conditions
- Improper rehydration or limited access to fluid
- Recognition & treatment

Physiological Factors
- Poor physical fitness
- Illness (fever, gastrointestinal)
- Medications
- Body composition
- Sleep deprivation
- Co-morbidities

Education and awareness of these risk factors can assist in RTA efforts.
CURRENT GUIDELINES FOR RETURN TO ACTIVITY/ DUTY
Return to Activity After EHS

• Military Setting- Heat Tolerance Testing (HTT)
• Athletic Setting-
 • ACSM general guidelines
 • NATA Position Statement, 2015
 • Korey Stringer Institute utilizing HTT + RTP progression
 • More recent case reports
 • Functional progression to activity

– Must have physician clearance and normal labs before returning to exercise
ACSM/DOD Roundtable, 2010

- No comprehensive and validated guidelines or recommendations for RTA/RTD
- Most guidelines are common sense recommendations:
 - Return to asymptomatic state
 - Normal labs
 - Cautious reintroduction to physical activity to ensure acclimatization

ACSM/DOD Roundtable, 2010

• ACSM Recommendations:
 – Refrain from exercise for at least 7 days following release from medical care
 – Follow up 1 wk post-incident for physical examination and lab testing or diagnostic imaging of affected organs based on clinical course of EHS incident
 – Once cleared, begin activity in a cool environment and gradually increase duration, intensity and heat exposure over 2 wk to demonstrate heat tolerance and acclimatization
 – If return to vigorous activity not accomplished in 4 wk, consider laboratory exercise-heat tolerance test
 – Full clearance if heat tolerant after 2 to 4 wk of full training

NATA Recommendations

• NATA Return to Activity/ Return to Play
 – 7 to 21 day rest period
 – Normal blood work
 – Physician clearance
 – Progression of physical activity
 • Low → high intensity
 • Use signs/symptoms of heat tolerance and gradual increase in exercise demands
 • Core temperature and heart rate should be monitored
 • Progression should be slowed, delayed or stopped if any signs or symptoms are experienced

General Guidelines for Acclimatization to Work in Hot Conditions

Table 1. Recommendations for Heat Acclimatization for Warm/Hot Conditions

<table>
<thead>
<tr>
<th>WBGT $^\text{a}$</th>
<th>Time Spent working in hot environment</th>
<th>Heat Acclimatization Days</th>
<th>Time Spent working in hot environment</th>
<th>Heat Acclimatization Days</th>
<th>Time Spent working in hot environment</th>
<th>Heat Acclimatization Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-81.9</td>
<td>90-100%</td>
<td>2 - 3</td>
<td>70-100%</td>
<td>3 - 5</td>
<td>50-100%</td>
<td>6</td>
</tr>
<tr>
<td>82-84.9</td>
<td>80-100%</td>
<td>2 - 4</td>
<td>70-100%</td>
<td>3 - 5</td>
<td>50-100%</td>
<td>6</td>
</tr>
<tr>
<td>85-87.9</td>
<td>70-100%</td>
<td>3 - 5</td>
<td>60-100%</td>
<td>4 - 6</td>
<td>50-100%</td>
<td>6</td>
</tr>
<tr>
<td>88-89.9</td>
<td>60-100%</td>
<td>4 - 6</td>
<td>50-100%</td>
<td>6</td>
<td>50-100%</td>
<td>6</td>
</tr>
<tr>
<td>90+</td>
<td>50-100%</td>
<td>6</td>
<td>50-100%</td>
<td>6</td>
<td>50-100%</td>
<td>6</td>
</tr>
</tbody>
</table>

Percentage of time should be increased for every day of acclimatization (i.e. for 80-100% across 2-4 days would me Day 1 is 80%, Day 2 90% and Day 3 is 100%. These ranges are intended to allow for flexibility dependent on work experience, clothing worn, etc.

Lopez & Ashley 2017
General Guidelines for Re-Acclimatization to Work in Hot Conditions

Table 2. Recommendations for Re-Acclimatization for Warm/Hot Conditions

Routine Absence Absence Due to Illness	GREEN Day 1 Day 2 Day 3 Day 4 Day 5	YELLOW Day 1 Day 2 Day 3 Day 4 Day 5 Day 6	RED Day 1 Day 2 Day 3 Day 4 Day 5 Day 6	
< 4	100	90 100	80 90 100	80 90 100
4-5	1-3	90 100	80 90 100	60 80 90 100
6-12	4-5	80 90 100	70 80 90 100	50 60 80 90 100
12-20	6-8	60 80 90 100	60 70 80 90 100	50 60 70 80 90 100
>20	>8	50 60 80 90 100	50 60 70 80 90 100	50 60 70 80 90 100

The color zones are based on the increased risk of heat strain due to WBGT and/or work intensity, where Green = Low, Yellow = Moderate, and Red = High level of risk.

Lopez & Ashley 2017
HEAT TOLERANCE TESTING
Heat Tolerance Testing (HTT)

- Israeli Defense Forces (IDF) using HTT since 1979 (Shapiro, 1979)
 - Stepping on bench 3 hrs

- HTT
 - Treadmill walking for 2 hrs in environmental chamber
 - 3.1 mph, 2% incline
 - 104°F (40°C), 40% relative humidity

Lisman et al. Military Medicine, 2014
Heat Tolerance Testing (HTT)

• HTT: Physiological Measures
 – Core Temperature (Tc)
 – Heart rate (HR)
 – Sweat rate

• Cut offs
 – Tc exceeds 101.3°F (38.5°C) OR HR > 150 bpm

• Tc and HR must plateau during HTT

Lisman et al. Military Medicine, 2014
Heat Tolerance Testing (HTT)

• HTT Controversial
 – Military physicians in U.S. do not rely solely on HTT for return to duty decisions

• Some issues raised:
 – Predictive capacity for future EHS?
 – Ability to measure potential deficits in thermoregulation
 – Utility in guiding return to activity process

Lisman et al. Military Medicine, 2014
Heat Tolerance Testing (HTT)

Figure 1: Core body temperature and heart rate during HTT 2 and 5 months post-EHS in an IDF soldier.

Heat Tolerance Testing (HTT)

Temporarily Heat Intolerant

Fig. 1 Body core temperature values of candidate ‘A’ that were measured during four HTTs. First test: ---; second test: - -; third test: ---; data are presented at a sampling rate of 1–5 min.

Fig. 2 Heart rate values of candidate ‘A’ that were measured during four HTTs. First test: ---; second test: - -; third test: ---; data are presented at a sampling rate of 1–5 min.

Heat Intolerant

Fig. 3 Body core temperature values of candidate ‘B’ that were measured during three HTTs. First test: ---; second test: - -; third test: ---; data are presented at a sampling rate of 1–5 min.

Fig. 4 Heart rate values of candidate ‘B’ that were measured during the three HTTs. First test: ---; second test: - -; third test: ---; data are presented at a sampling rate of 1–5 min.

Ketko et al. *Disaster and Mil Med.* 2015
Figure 2: Clinical algorithm for return to play/return to duty following EHS. Kazman et al. Curr Sports Med Rep. 2013
Necessities for Implementation

• Heart rate monitor
• Accurate body temperature monitoring
 – Rectal, gastrointestinal thermistor
• Monitor signs and symptoms of heat stress
• Hydration status
 – Body weights, urine color/specific gravity, fluid consumed, sweat rate
• Exercise/Work protocol
 – Need to work with supervisor
 – Work toward gradually matching individual’s work environment, duration, intensity, etc.

Conclusions

• Death from exertional heat stroke is preventable with proper recognition and immediate aggressive cooling
• Have a plan for how to treat EHI on-site
• Determining initial causes of EHS is key to implementing individualized RTA protocol
Conclusions

• Gradual progression to work intensity and environment ensures acclimatization to work & safe adaptations to extreme environments
• EHS may lead to heat intolerance or other complications where work in the hot environment would be contraindicated
Questions?

rlopez@health.usf.edu
813-396-9078