Management & Return to Work/Activity Following Exertional Heat Illness

Rebecca M. Lopez, PhD, ATC, CSCS University of South Florida Athletic Training/ Orthopaedics & Sports Medicine Korey Stringer Institute SCCAHS 2018

Objectives

- After this presentation, attendees will learn:
 - Brief epidemiology of heat-related illness in occupational setting
 - Exertional heat illness (EHI) overview
 - On-site management of exertional heat illness
 - Importance of recognizing predisposing factors when addressing return to work/activity (RTA) in the heat
 - Various physiological tests that should be considered when making a RTA decision following EHI

EPIDEMIOLOGY OF HEAT-RELATED ILLNESS IN OCCUPATIONAL SETTINGS

Recent Epidemiology of Heat Illness in Occupational Setting

- Between 2000-2010, 359 heat-related deaths in U.S.
 - 0.22 per 1 million workers
 - Majority of cases between June-August
 - Noon 6PM
 - Agriculture: > 35x the risk of heat-related death
 - Construction: 13x the risk of heat-related death

Recent Epidemiology of Heat Illness in Occupational Setting

- Between 2007-2011: 8,315 heat-related emergency department (ED) visits and inpatient hospitalizations (IH) in Southeast U.S.
 - Out-of-state workers may not be well acclimated to heat/ humidity in Southeast
 - Many cases occur on first few days of exposure
 - Those with co-morbidities are at greater risk for more serious condition
 - Greatest risk May through September
 - Many employers had no heat illness prevention program

What happens when employees leave ED and return to work?

Is the risk of EHI still present?

Exertional Heat Illness

- Exercise-associated muscle cramps (i.e. heat cramps)
- Heat syncope
- Heat exhaustion
- Exertional heat stroke

Exercise-Associated Muscle Cramps (EAMC)

Recognition

- Visible muscle group cramping, localized pain, thirst, dehydration, sweating, fatigue
- Differentiate from sickle cell trait muscle pain
- Initial Treatment
 - Rest, passive stretching, ice massage
 - If sodium depleted → sodium containing fluids & food
- Prevention
 - Two basic theories/schools of thought:

Electrolyte (sodium chloride) Depletion

Muscle Fatigue/ Overload

NATA Position Statement: Exertional Heat Illnesses, 2015

Exercise-Associated Muscle Cramps (EAMC)

- Return to Work/ Clearance for Activity
 - Exercise as tolerable (muscle soreness)
 - Determine cause of muscle cramps
 - Electrolyte depletion vs fatigue vs combo
 - Patient education (diet, exercise, hydration)
 - <u>R/O "cramping" associated with exertional sickling (sickle cell trait)</u>

Heat Syncope

- Recognition
 - Fainting or collapse with normal body temperature
 - Assess responsiveness, breathing, HR to rule out cardiac condition
- Initial Treatment
 - Move to cooler area, monitor vitals, elevate legs above heart
 - Cool skin, rehydrate
 - Call 911 if condition does not improve

Heat Syncope

- Clearance for Activity
 - <u>Rule out more serious cause of syncope</u>
 - (Cardiac, heat stroke, sickle-cell associated collapse, others?)
 - Educate on exercise-associated collapse or lack of heat acclimatization
 - Determine cause of syncopal episode

Heat Exhaustion

- Initial, On-Site Treatment
 - Remove excess clothing and equipment
 - Move to cooler area
 - Body cooling via ice towels, fans
 - Place in supine position with legs above level of heart
 - Fluid replacement if possible
 - Transfer to physician if IV needed or symptoms persist for more than 30 min

Heat Exhaustion

- Follow Up Treatment/ Return to Activity
 - Determine cause of heat exhaustion
 - Fluid depletion, sodium depletion?
 - Lack of heat acclimatization?
 - Exercise demands unmatched to fitness level
 - Rule out heat stroke (normal enzyme levels, CK)
 - Ensure cause of event is eliminated/modified

NATA Position Statement: Exertional Heat Illnesses, 2015

EXERTIONAL HEAT STROKE

Exertional Heat Stroke

- Most severe exertional heat illness (medical emergency)
- Defined by hyperthermia (> 105°F/ 40.5°C) associated with central nervous system and potential for multiple organ system failure → death
- Result of metabolic heat production and environmental heat load
- Excessive heat production and/or inhibited heat loss

Pathophysiology of EHS

Epstein & Roberts. Scand J Med Sci Sports, 2011.

Death from EHS

- Death from EHS is preventable
- Why they die:
 - Misdiagnosis (no/ inaccurate temp)
 - No care or delay in care/tx
 - Inefficient cooling modality
 - Immediate transport
 - RTA too soon

Casa et al. EHS: New Concepts Regarding Cause & Care. CSMR. 2012

Clinical Presentation

- Clinical Signs, Symptoms, and Presentation
 - Elevated core (rectal) temp > 105°F (40.5°C)
 - CNS: restlessness, seizures, confusion, coma
 - Tachypnea, hyperventilation
 - Cerebral edema, decerebrate, decorticate posturing
 - Coagulopathies (disseminated intravascular coagulation; DIC)
 - Cardiac impact and dysfunction
 - Gastrointestinal hemorrhage
 - Hepatic failure
 - Elevated liver enzymes
 - Alanine Transaminase (ALT); aspartate aminotransferase (AST)
 - Explosive rhabdomyolysis (elevated CK levels)

Present on-site (prior to transport)

Wagner & Boyd, 2008; Epstein & Roberts, 2011

Basic Paradigm for Care of EHS

Consensus Statement- Prehospital Care of Exertional Heat Stroke, 2018

RTA CONSIDERATIONS FOLLOWING EHS

RTA Considerations

Side Note: How can this be prevented for the individual RTA <u>and</u> others?

Prevention, Recognition, Tx, EAP

Lopez et al. J Athl Train. 2018

RTA Considerations

- Has the individual recovered from EHS?
 - Full recovery or lingering sequelae (liver enzymes, renal function, muscle injury/CK levels)
 - Heat intolerance or temporary heat intolerance
 - Core temperature & heart rate responses to exercise in heat
 - Heat intolerance: lower thermoregulatory efficiency and the inability to properly adapt to exercise in hot environments
 - Ketko et al. 2015

Recovery

- Recovery <u>directly</u> associated with recognition and care provided at time of EHS
 - Was there prompt recognition of EHS?
 - Was individual aggressively cooled (via cold water immersion) to below threshold (T_{re} < 105°F, ideally 102.5°F before transport to ED) within 30 minutes of collapse?

NATA Position Statement: Exertional Heat Illnesses, 2015

Armstrong et al. ACSM Position Stand on EHI, 2007.

Recovery

- Recovery associated with recognition and care provided
 - Normal organ function
 - Normal blood values
 - Heat tolerance
 - Physician clearance

Recovery

Table 26-1 Normal Laboratory Blood Measures for Return to Play From Exertional Heat Stroke												
Blood or Serum Enzyme Measure	BUN (mg/dL)	Creatinine (mg/dL)	AST (UI/L)	ALT (UI/L)	CK (UI/L)	LDH (UI/L)						
Normal level*	5 to 20	0.6 to 1.2; M 0.5 to 1.1; F	<40	$<31; F BMI \le 23^{+}$ $<42; F BMI \ge 23^{+}$ $<41; M BMI \le 23^{+}$ $<66; M BMI \ge 23^{+}$	45 to 260	<250						

* Specific ranges should be established for each laboratory to determine abnormal ranges for each of the markers above.

+ Values adjusted to BMI and sex.

Abbreviations: ALT, alanine transaminase; AST, aspartate aminotransferase; BMI, body mass index; BUN, blood urea nitrogen; CK, creatine kinase; F, female; g/dL, grams per deciliter; LDH, lactate dehydrogenase; M, male; UI/L, international units per liter.

Huggins & O'Connor. When can an athlete return to play following an exertional heat illness? In: Lopez RM, ed. Quick Questions in Heat-Related Illness and Hydration: Expert Advice in Sports Medicine. SLACK, Inc. 2015

What Caused the EHS?

- Causes must be addressed <u>before</u> RTA —EHS is multifactorial
 - Intrinsic and extrinsic factors
- <u>Use factors that led to EHS as guideline</u> for the RTA process

– Johnson et al. 2013; Adams et al. 2015

What Causes Can Be Addressed?

Organizational Factors

- Heat acclimatization
- Work to rest ratio
- Modifications based on environmental conditions
- Improper rehydration or limited access to fluid
- Recognition & treatment

Physiological Factors

- Poor physical fitness
- Illness (fever, gastrointestinal)
- Medications
- Body composition
- Sleep deprivation
- Co-morbidities

Education and awareness of these risk factors can assist in RTA efforts.

CURRENT GUIDELINES FOR RETURN TO ACTIVITY/ DUTY

Return to Activity After EHS

- Military Setting- Heat Tolerance Testing (HTT)
- Athletic Setting-
 - ACSM general guidelines
 - NATA Position Statement, 2015
 - Korey Stringer Institute utilizing HTT + RTP progression
 - More recent case reports
 - Functional progression to activity
 - Must have physician clearance and normal labs <u>before</u> returning to exercise

ACSM/DOD Roundtable, 2010

- No comprehensive and validated guidelines or recommendations for RTA/RTD
- Most guidelines are common sense recommendations:
 - Return to asymptomatic state
 - Normal labs
 - Cautious reintroduction to physical activity to ensure acclimatization

ACSM/DOD Roundtable, 2010

- ACSM Recommendations:
 - Refrain from exercise for at least 7 days following release from medical care
 - Follow up 1 wk post-incident for physical examination and lab testing or diagnostic imaging of affected organs based on clinical course of EHS incident
 - Once cleared, <u>begin activity in a cool environment and gradually</u> <u>increase duration, intensity and heat exposure over 2 wk to</u> <u>demonstrate heat tolerance and acclimatization</u>
 - If return to vigorous activity not accomplished in 4 wk, consider laboratory exercise-heat tolerance test
 - Full clearance if heat tolerant after 2 to 4 wk of full training

O'Connor et al. Curr Sports Med Rep, 2010

NATA Recommendations

- NATA Return to Activity/ Return to Play
 - 7 to 21 day rest period
 - Normal blood work
 - Physician clearance
 - Progression of physical activity
 - Low \rightarrow high intensity
 - Use signs/symptoms of heat tolerance and gradual increase in exercise demands
 - Core temperature and heart rate should be monitored
 - Progression should be slowed, delayed or stopped if any signs or symptoms are experienced

NATA Position Statement: Exertional Heat Illnesses, 2015

General Guidelines for Acclimatization to Work in Hot Conditions

Table 1. Recommendations for Heat Acclimatization for Warm/Hot Conditions

Recommendations for Heat Acclimatization for Warm/Hot Conditions												
	Light Wor	k (125 - 275 W)	Moderate Wor	rk (275 - 375 W)	Heavy Work (375 - 475 W)							
WBGT F	Time Spent working in hot environment	Heat Acclimatization Days	Time Spent working in hot environment	Heat Acclimatization Days	Time Spent working in hot environment	Heat Acclimatization Days						
78-81.9	90-100%	2 - 3	70-100%	3 - 5	50-100%	6						
82-84.9	80-100%	2 - 4	70-100%	3 - 5	50-100%	6						
85-87.9	70-100%	3 - 5	60-100%	4 - 6	50-100%	6						
88-89.9	60-100%	4 - 6	50-100%	6	50-100%	6						
90+	50-100%	6	50-100%	6	50-100%	6						

Percentage of time should be increased for every day of acclimatization (i.e. for 80-100% across 2-4 days would me Day 1 is 80%, Day 2 90% and Day 3 is 100%. These ranges are intended to allow for flexibility dependent on work experience, clothing worn, etc.

General Guidelines for Re-Acclimatization to Work in Hot Conditions

Recommendations for Re-Acclimatization for Warm/Hot Conditions																		
Routine Absen Absence Due Illnes	Absence Due to Illness	GREEN					YELLOW				RED							
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
< 4		100	-	2. 2	- 25		90	100					80	90	100	1		
4-5	1-3	90	100				80	90	100	1			60	80	90	100	1.	
6-12	4-5	80	90	100			70	80	90	100	16		50	60	80	90	100	
12-20	6-8	60	80	90	100	ř. d	60	70	80	90	100	1.5	50	60	70	80	90	100
>20	>8	50	60	80	90	100	50	60	70	80	90	100	50	60	70	80	90	100

Table 2 Recommendations for Re-Acclimatization for Warm/Hot Condition

The color zones are based on the increased risk of heat strain due to WBGT and/or work intensity, where Green = Low, Yellow = Moderate, and Red = High level of risk.

HEAT TOLERANCE TESTING

- Israeli Defense Forces (IDF) using HTT since 1979 (Shapiro, 1979)
 - Stepping on bench 3 hrs
- HTT
 - Treadmill walking for 2 hrs in environmental chamber
 - 3.1 mph, 2% incline
 - 104°F (40°C), 40% relative humidity

Lisman et al. Military Medicine, 2014

- HTT: Physiological Measures
 - Core Temperature (Tc)
 - Heart rate (HR)
 - Sweat rate
- Cut offs
 - Tc exceeds 101.3°F (38.5°C) OR HR > 150 bpm
- Tc and HR must plateau during HTT

Lisman et al. Military Medicine, 2014

- HTT Controversial
 - Military physicians in U.S. do not rely solely on HTT for return to duty decisions
- Some issues raised:
 - Predictive capacity for future EHS?
 - Ability to measure potential deficits in thermoregulation
 - Utility in guiding return to activity process

Figure 1: Core body temperature and heart rate during HTT 2 and 5 months post-EHS in an IDF soldier.

Kazman et al. Curr Sports Med Rep. 2013

Temporarily Heat Intolerant

rig. 1 Body core temperature values of candidate A that were measured during four HTTs. First test: --→-; Second test: --; Third test: --→-; data are presented at a sampling rate of 1–5 min

Heat Intolerant

Ketko et al. Disaster and Mil Med. 2015

Figure 2: Clinical algorithm for return to play/return to duty following EHS. Kazman et al. Curr Sports Med Rep. 2013

Necessities for Implementation

- Heart rate monitor
- Accurate body temperature monitoring — Rectal, gastrointestinal thermistor
- Monitor signs and symptoms of heat stress
- Hydration status
 - Body weights, urine color/specific gravity, fluid consumed, sweat rate
- Exercise/Work protocol
 - Need to work with supervisor
 - Work toward gradually matching individual's work environment, duration, intensity, etc.

Lopez et al. Functional return to play protocol following EHS in high school football player, *J Athl Train.* 2018.

Conclusions

- Death from exertional heat stroke is preventable with proper recognition and immediate aggressive cooling
- Have a plan for how to treat EHI on-site
- Determining initial causes of EHS is key to implementing individualized RTA protocol

Conclusions

- Gradual progression to work intensity and environment ensures acclimatization to work & safe adaptations to extreme environments
- EHS may lead to heat intolerance or other complications where work in the hot environment would be contraindicated

Questions?

rlopez@health.usf.edu 813-396-9078

Athletic Training: LEADING THE WAY